Search results for "Oceans and Seas"

showing 10 items of 55 documents

Two decades of monitoring in marine debris ingestion in loggerhead sea turtle, Caretta caretta, from the western Mediterranean

2018

Abstract Anthropogenic marine debris is one of the major worldwide threats to marine ecosystems. The EU Marine Strategy Framework Directive (MSFD) has established a protocol for data collection on marine debris from the gut contents of the loggerhead sea turtle (Caretta caretta), and for determining assessment values of plastics for Good Environmental Status (GES). GES values are calculated as percent turtles having more than average plastic weight per turtle. In the present study, we quantify marine debris ingestion in 155 loggerhead sea turtles collected in the period 1995–2016 in waters of western Mediterranean (North-east Spain). The study aims (1) to update and standardize debris inges…

010504 meteorology & atmospheric sciencesGood Environmental StatusOceans and SeasHealth Toxicology and Mutagenesis010501 environmental sciencesToxicology01 natural sciencesLoggerhead sea turtlelaw.inventionEatingMediterranean sealawMarine debrisMediterranean SeaAnimalsWater PollutantsMarine ecosystemTurtle (robot)Ecosystem0105 earth and related environmental sciencesWaste ProductsMarine biologyEcologybiologyGeneral Medicinebiology.organism_classificationPollutionDebrisGastrointestinal ContentsTurtlesFisheryItalySpainEnvironmental sciencePlasticsEnvironmental Pollution
researchProduct

Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants

2017

© The Author(s).

010504 meteorology & atmospheric scienceslcsh:MedicineSoil Chemistry010501 environmental sciences01 natural sciencesGeographical LocationsSoilOrganic Chemicalslcsh:ScienceSoil MicrobiologyTotal organic carbonRookeryMultidisciplinaryEcologySoil chemistryGenomicsSeabirdsChemistryMedical MicrobiologyVertebratesPhysical SciencesEnvironmental PollutantsSeasonsSoil microbiologyResearch ArticleChemical ElementsPollutantsDeceptionOceans and SeasSoil ScienceAntarctic RegionsMicrobial GenomicsPenguinsMicrobiologyBirdsGeneticsAnimalsEnvironmental ChemistryDominance (ecology)0105 earth and related environmental sciencesPollutantShetlandBehaviorBacterialcsh:REcology and Environmental SciencesOrganismsBiology and Life SciencesSpheniscidaeAmniotesPeople and PlacesSoil waterAntarcticaMetagenomeEnvironmental sciencelcsh:QMicrobiomeMetagenomics
researchProduct

The revolution of crossdating in marine palaeoecology and palaeoclimatology.

2019

Over the past century, the dendrochronology technique of crossdating has been widely used to generate a global network of tree-ring chronologies that serves as a leading indicator of environmental variability and change. Only recently, however, has this same approach been applied to growth increments in calcified structures of bivalves, fish and corals in the world's oceans. As in trees, these crossdated marine chronologies are well replicated, annually resolved and absolutely dated, providing uninterrupted multi-decadal to millennial histories of ocean palaeoclimatic and palaeoecological processes. Moreover, they span an extensive geographical range, multiple trophic levels, habitats and f…

0106 biological sciences010504 meteorology & atmospheric sciences010604 marine biology & hydrobiologyClimateClimate ChangeOceans and SeasClimate changeGlobal Change BiologyBiology01 natural sciencesAgricultural and Biological Sciences (miscellaneous)TreesPaleoceanographySclerochronologyPaleoclimatologyPaleoecologyDendrochronologyAnimalsPhysical geographyGeneral Agricultural and Biological SciencesEcosystem0105 earth and related environmental sciencesBiology letters
researchProduct

How ocean acidification can benefit calcifiers.

2017

Reduction in seawater pH due to rising levels of anthropogenic carbon dioxide (CO2) in the world's oceans is a major force set to shape the future of marine ecosystems and the ecological services they provide [1,2]. In particular, ocean acidification is predicted to have a detrimental effect on the physiology of calcifying organisms [3]. Yet, the indirect effects of ocean acidification on calcifying organisms, which may counter or exacerbate direct effects, is uncertain. Using volcanic CO2 vents, we tested the indirect effects of ocean acidification on a calcifying herbivore (gastropod) within the natural complexity of an ecological system. Contrary to predictions, the abundance of this cal…

0106 biological sciences010504 meteorology & atmospheric sciencesEnvironmental changeOceans and SeasGastropodaVolcanic EruptionsBiology01 natural sciencesGeneral Biochemistry Genetics and Molecular Biologychemistry.chemical_compoundAbundance (ecology)AnimalsMarine ecosystemEcosystemSeawater14. Life underwaterEcosystem0105 earth and related environmental sciencesBiomass (ecology)Biochemistry Genetics and Molecular Biology (all)Primary producersEcology010604 marine biology & hydrobiologyfungiOcean acidificationCarbon DioxideHydrogen-Ion ConcentrationAgricultural and Biological Sciences (all)chemistry13. Climate actionCarbon dioxideCalciumGeneral Agricultural and Biological SciencesAcidsgeographic locationsCurrent biology : CB
researchProduct

Deciphering carbon sources of mussel shell carbonate under experimental ocean acidification and warming.

2018

Abstract Ocean acidification and warming is widely reported to affect the ability of marine bivalves to calcify, but little is known about the underlying mechanisms. In particular, the response of their calcifying fluid carbonate chemistry to changing seawater carbonate chemistry remains poorly understood. The present study deciphers sources of the dissolved inorganic carbon (DIC) in the calcifying fluid of the blue mussel (Mytilus edulis) reared at two pH (8.1 and 7.7) and temperature (16 and 22 °C) levels for five weeks. Stable carbon isotopic ratios of seawater DIC, mussel soft tissues and shells were measured to determine the relative contribution of seawater DIC and metabolically gener…

0106 biological sciences010504 meteorology & atmospheric sciencesMytilus edulisOceans and SeasCarbonateschemistry.chemical_elementAquatic ScienceOceanography01 natural scienceschemistry.chemical_compoundCalcification Physiologichemic and lymphatic diseasesDissolved organic carbonAnimalsSeawater0105 earth and related environmental sciencesCarbon IsotopesChemistry010604 marine biology & hydrobiologyOcean acidificationGeneral MedicineMusselHydrogen-Ion ConcentrationPollutionIsotopes of carbonEnvironmental chemistryCarbonateSeawaterCarbonBlue musselcirculatory and respiratory physiologyMarine environmental research
researchProduct

Higher sensitivity towards light stress and ocean acidification in an Arctic sea-ice-associated diatom compared to a pelagic diatom.

2020

Thalassiosira hyalina and Nitzschia frigida are important members of Arctic pelagic and sympagic (sea-ice-associated) diatom communities. We investigated the effects of light stress (shift from 20 to 380 µmol photons m-2  s-1 , resembling upwelling or ice break-up) under contemporary and future pCO2 (400 vs 1000 µatm). The responses in growth, elemental composition, pigmentation and photophysiology were followed over 120 h and are discussed together with underlying gene expression patterns. Stress response and subsequent re-acclimation were efficiently facilitated by T. hyalina, which showed only moderate changes in photophysiology and elemental composition, and thrived under high light aft…

0106 biological sciences010504 meteorology & atmospheric sciencesPhysiologyOceans and SeasPlant Science01 natural sciencesAcclimatizationSeawater14. Life underwater0105 earth and related environmental sciencesDiatomsgeographygeography.geographical_feature_categorybiologyEcologyArctic Regions010604 marine biology & hydrobiologyPelagic zoneOcean acidificationHydrogen-Ion Concentrationbiology.organism_classificationArctic ice packLight intensityDiatomArctic13. Climate actionUpwellingThe New phytologistReferences
researchProduct

Eye fluke-induced cataracts in natural fish populations: is there potential for host manipulation?

2010

SUMMARYManipulation of host phenotype (e.g. behaviour, appearance) is suggested to be a common strategy to enhance transmission in trophically transmitted parasites. However, in many systems, evidence of manipulation comes exclusively from laboratory studies and its occurrence in natural host populations is poorly understood. Here, we examined the potential for host manipulation by Diplostomum eye flukes indirectly by quantifying the physiological effects of parasites on fish. Earlier laboratory studies have shown that Diplostomum infection predisposes fish to predation by birds (definitive hosts of the parasites) by reducing fish vision through cataract formation. However, occurrence of ca…

0106 biological sciencesBehavior Controlgenetic structuresOceans and SeasGasterosteusEye010603 evolutionary biology01 natural sciencesCataractHost-Parasite Interactions03 medical and health sciencesLeuciscusFish DiseasesfoodCoregonus lavaretusDiplostomum; Parasite-host interactions; Parasite transmission; Predation; TrematodaVision in fishesAnimalsGymnocephalus030304 developmental biology0303 health sciencesbiologyfood.dishRaptorsEcologyta1184Fishesbiology.organism_classificationeye diseases3. Good healthObligate parasiteInfectious DiseasesPredatory Behaviorta1181Animal Science and ZoologyParasitologyTrematodaRutilusTrematodaParasitology
researchProduct

A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish

2019

International audience; Assessing larval dispersal is essential to understand the structure and dynamics of marine populations. However, knowledge about early-life dispersal is sparse, and so is our understanding of the spawning process, perhaps the most obscure component of biphasic life cycles. Indeed, the poorly known species-specific spawning modality and early-life traits, along with the high spatio-temporal variability of the oceanic circulation experienced during larval drift, hamper our ability to properly appraise the realized connectivity of coastal fishes. Here, we propose an analytical framework which combines Lagrangian modeling, network theory, otolith analyses and biogeograph…

0106 biological sciencesConservation of Natural ResourcesOceans and SeasPopulation DynamicsCoastal fishEcosystem ManagementConservationAquatic ScienceOceanography010603 evolutionary biology01 natural sciencesFish natal originsmedicineMediterranean SeaAnimalsDiplodus vulgarisMarine ecosystem14. Life underwaterEcosystemOtolithMarine Protected AreaLagrangian Flow Network[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere[SDV.EE]Life Sciences [q-bio]/Ecology environmentFish natal originbiologyEcology010604 marine biology & hydrobiologyFishesMarine connectivityPelagic zoneGeneral MedicineDiplodusbiology.organism_classificationPollutionCoastal fishesCoastal fishemedicine.anatomical_structureLarvaBiological dispersalMarine protected areaModels-hydrodynamicsModels-hydrodynamic
researchProduct

Ocean Acidification and the Loss of Phenolic Substances in Marine Plants

2012

Rising atmospheric CO(2) often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2) availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2) enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2) …

0106 biological sciencesCymodocea nodosaved/biology.organism_classification_rank.speciesCarbonatesSecondary MetabolismMarine and Aquatic Scienceslcsh:MedicinePlant Science01 natural scienceschemistry.chemical_compoundGlobal Change Ecologylcsh:SciencePhysiological EcologyMultidisciplinaryAlismatalesbiologyEcologyEcologyPlant BiochemistryMarine EcologyOcean acidificationPotamogetonaceaeHydrogen-Ion ConcentrationSeagrassProductivity (ecology)ItalyCarbon dioxideCoastal EcologyResearch ArticleOceans and SeasMarine Biology010603 evolutionary biologyStatistics NonparametricHydrothermal VentsPhenolsPlant-Environment InteractionsTerrestrial plantSeawater14. Life underwaterocean acidification climate change mediterranean sea seagrassBiologyAnalysis of VarianceChemical EcologyMarylandved/biology010604 marine biology & hydrobiologyPlant Ecologyfungilcsh:R15. Life on landCarbon Dioxidebiology.organism_classificationSalinitychemistry13. Climate actionEarth Scienceslcsh:QRuppia maritima
researchProduct

Ocean acidification impairs vermetid reef recruitment

2014

Vermetids form reefs in sub-tropical and warm-temperate waters that protect coasts from erosion, regulate sediment transport and accumulation, serve as carbon sinks and provide habitat for other species. The gastropods that form these reefs brood encapsulated larvae; they are threatened by rapid environmental changes since their ability to disperse is very limited. We used transplant experiments along a natural CO2 gradient to assess ocean acidification effects on the reef-building gastropod Dendropoma petraeum. We found that although D. petraeum were able to reproduce and brood at elevated levels of CO2, recruitment success was adversely affected. Long-term exposure to acidified conditions…

0106 biological sciencesDendropoma petraeumGeologic Sediments010504 meteorology & atmospheric sciencesOceans and SeasGastropoda01 natural sciencesArticleCLIMATE-CHANGE ECOLOGYWater MovementsAnimals14. Life underwaterReefMollusca0105 earth and related environmental sciencesgeographyMultidisciplinarygeography.geographical_feature_categorybiologyEcologyCoral Reefs010604 marine biology & hydrobiologyfungiECOSYSTEM ECOLOGYWaterOcean acidificationCoral reefCarbon DioxideHydrogen-Ion Concentrationbiology.organism_classificationBroodFisheryHabitatEnvironmental scienceECOSYSTEM ECOLOGY; CLIMATE-CHANGE ECOLOGYEnvironmental issues with coral reefsgeographic locationsScientific Reports
researchProduct